Полная энергия математического маятника. Свободные колебания

Механическая система, которая состоит из материальной точки (тела), висящей на нерастяжимой невесомой нити (ее масса ничтожно мала по сравнению с весом тела) в однородном поле тяжести, называется математическим маятником (другое название - осциллятор). Бывают и другие виды этого устройства. Вместо нити может быть использован невесомый стержень. Математический маятник может наглядно раскрыть суть многих интересных явлений. При малой амплитуде колебания его движение называется гармоническим.

Общие сведения о механической системе

Формула периода колебания этого маятника была выведена голландским ученым Гюйгенсом (1629-1695 гг.). Этот современник И. Ньютона очень увлекался данной механической системой. В 1656 г. он создал первые часы с маятниковым механизмом. Они измеряли время с исключительной для тех времен точностью. Это изобретение стало важнейшим этапом в развитии физических экспериментов и практической деятельности.

Если маятник находится в положении равновесия (висит отвесно), то будет уравновешиваться силой натяжения нити. Плоский маятник на нерастяжимой нити является системой с двумя степенями свободы со связью. При смене всего одного компонента меняются характеристики всех ее частей. Так, если нитку заменить на стержень, то у данной механической системы будет всего 1 степень свободы. Какими же свойствами обладает математический маятник? В этой простейшей системе под воздействием периодического возмущения возникает хаос. В том случае, когда точка подвеса не двигается, а совершает колебания, у маятника появляется новое положение равновесия. При быстрых колебаниях вверх-вниз эта механическая система приобретает устойчивое положение «вверх тормашками». У нее есть и свое название. Ее называют маятником Капицы.

Свойства маятника

Математический маятник имеет очень интересные свойства. Все они подтверждаются известными физическими законами. Период колебаний любого другого маятника зависит от разных обстоятельств, таких как размер и форма тела, расстояние между точкой подвеса и центром тяжести, распределение массы относительно данной точки. Именно поэтому определение периода висящего тела является довольно сложной задачей. Намного легче вычисляется период математического маятника, формула которого будет приведена ниже. В результате наблюдений над подобными механическими системами можно установить такие закономерности:

Если, сохраняя одинаковую длину маятника, подвешивать различные грузы, то период их колебаний получится одинаковым, хотя их массы будут сильно различаться. Следовательно, период такого маятника не зависит от массы груза.

Если при запуске системы отклонять маятник на не слишком большие, но разные углы, то он станет колебаться с одинаковым периодом, но по разным амплитудам. Пока отклонения от центра равновесия не слишком велики, колебания по своей форме будут достаточно близки гармоническим. Период такого маятника никак не зависит от колебательной амплитуды. Это свойство данной механической системы называется изохронизмом (в переводе с греческого «хронос» - время, «изос» - равный).

Период математического маятника

Этот показатель представляет собой период Несмотря на сложную формулировку, сам процесс очень прост. Если длина нити математического маятника L, а ускорение свободного падения g, то эта величина равна:

Период малых собственных колебаний ни в какой мере не зависит от массы маятника и амплитуды колебаний. В этом случае маятник двигается как математический с приведенной длиной.

Колебания математического маятника

Математический маятник совершает колебания, которые можно описать простым дифференциальным уравнением:

x + ω2 sin x = 0,

где х (t) - неизвестная функция (это угол отклонения от нижнего положения равновесия в момент t, выраженный в радианах); ω - положительная константа, которая определяется из параметров маятника (ω = √g/L, где g - это ускорение свободного падения, а L - длина математического маятника (подвес).

Уравнение малых колебаний вблизи положення равновесия (гармоническое уравнение) выглядит так:

x + ω2 sin x = 0

Колебательные движения маятника

Математический маятник, который совершает малые колебания, двигается по синусоиде. Дифференциальное уравнение второго порядка отвечает всем требованиям и параметрам такого движения. Для определения траектории необходимо задать скорость и координату, из которых потом определяются независимые константы:

x = A sin (θ 0 + ωt),

где θ 0 - начальная фаза, A - амплитуда колебания, ω - циклическая частота, определяемая из уравнения движения.

Математический маятник (формулы для больших амплитуд)

Данная механическая система, совершающая свои колебания со значительной амплитудой, подчиняется более сложным законам движения. Для такого маятника они рассчитываются по формуле:

sin x/2 = u * sn(ωt/u),

где sn - синус Якоби, который для u < 1 является периодической функцией, а при малых u он совпадает с простым тригонометрическим синусом. Значение u определяют следующим выражением:

u = (ε + ω2)/2ω2,

где ε = E/mL2 (mL2 - энергия маятника).

Определение периода колебания нелинейного маятника осуществляется по формуле:

где Ω = π/2 * ω/2K(u), K - эллиптический интеграл, π - 3,14.

Движение маятника по сепаратрисе

Сепаратрисой называют траекторию динамической системы, у которой двумерное фазовое пространство. Математический маятник движется по ней непериодически. В бесконечно дальнем моменте времени он падает из крайнего верхнего положения в сторону с нулевой скоростью, затем постепенно набирает ее. В конечном итоге он останавливается, вернувшись в исходное положение.

Если амплитуда колебаний маятника приближается к числу π , это говорит о том, что движение на фазовой плоскости приближается к сепаратрисе. В этом случае под действием малой вынуждающей периодической силы механическая система проявляет хаотическое поведение.

При отклонении математического маятника от положения равновесия с некоторым углом φ возникает касательная силы тяжести Fτ = -mg sin φ. Знак «минус» означает, что эта касательная составляющая направляется в противоположную от отклонения маятника сторону. При обозначении через x смещения маятника по дуге окружности с радиусом L его угловое смещение равняется φ = x/L. Второй закон предназначенный для проекций и силы, даст искомое значение:

mg τ = Fτ = -mg sin x/L

Исходя из этого соотношения, видно, что этот маятник представляет собой нелинейную систему, поскольку сила, которая стремится вернуть его в положение равновесия, всегда пропорциональна не смещению x, а sin x/L.

Только тогда, когда математический маятник осуществляет малые колебания, он является гармоническим осциллятором. Иными словами, он становится механической системой, способной выполнять гармонические колебания. Такое приближение практически справедливо для углов в 15-20°. Колебания маятника с большими амплитудами не является гармоническим.

Закон Ньютона для малых колебаний маятника

Если данная механическая система выполняет малые колебания, 2-й закон Ньютона будет выглядеть таким образом:

mg τ = Fτ = -m* g/L* x.

Исходя из этого, можно заключить, что математического маятника пропорционально его смещению со знаком «минус». Это и является условием, благодаря которому система становится гармоническим осциллятором. Модуль коэффициента пропорциональности между смещением и ускорением равняется квадрату круговой частоты:

ω02 = g/L; ω0 = √ g/L.

Эта формула отражает собственную частоту малых колебаний этого вида маятника. Исходя из этого,

T = 2π/ ω0 = 2π√ g/L.

Вычисления на основе закона сохранения энергии

Свойства маятника можно описать и при помощи закона сохранения энергии. При этом следует учитывать, что маятника в поле тяжести равняется:

E = mg∆h = mgL(1 - cos α) = mgL2sin2 α/2

Полная равняется кинетической или максимальной потенциальной: Epmax = Ekmsx = E

После того как будет записан закон сохранения энергии, берут производную от правой и левой частей уравнения:

Поскольку производная от постоянных величин равняется 0, то (Ep + Ek)" = 0. Производная суммы равняется сумме производных:

Ep" = (mg/L*x2/2)" = mg/2L*2x*x" = mg/L*v + Ek" = (mv2/2) = m/2(v2)" = m/2*2v*v" = mv* α,

следовательно:

Mg/L*xv + mva = v (mg/L*x + m α) = 0.

Исходя из последней формулы находим: α = - g/L*x.

Практическое применение математического маятника

Ускорение изменяется с географической широтой, поскольку плотность земной коры по всей планете не одинакова. Там, где залегают породы с большей плотностью, оно будет несколько выше. Ускорение математического маятника нередко применяют для геологоразведки. В его помощью ищут различные полезные ископаемые. Просто подсчитав количество колебаний маятника, можно обнаружить в недрах Земли каменный уголь или руду. Это связано с тем, что такие ископаемые имеют плотность и массу больше, чем лежащие под ними рыхлые горные породы.

Математическим маятником пользовались такие выдающиеся ученые, как Сократ, Аристотель, Платон, Плутарх, Архимед. Многие из них верили в то, что эта механическая система может влиять на судьбу и жизнь человека. Архимед использовал математический маятник при своих вычислениях. В наше время многие оккультисты и экстрасенсы пользуются этой механической системой для осуществления своих пророчеств или поиска пропавших людей.

Известный французский астроном и естествоиспытатель К. Фламмарион для своих исследований также использовал математический маятник. Он утверждал, что с его помощью ему удалось предсказать открытие новой планеты, появление Тунгусского метеорита и другие важные события. Во время Второй мировой войны в Германии (г. Берлин) работал специализированный Институт маятника. В наши дни подобными исследованиями занят Мюнхенский институт парапсихологии. Свою работу с маятником сотрудники этого заведения называют «радиэстезией».

Математический маят­ник - это материальная точка, подвешенная на невесомой и нерас­тяжимой нити, находящейся в поле тяжести Земли. Математический маятник - это идеализированная модель, правильно описывающая реальный маятник лишь при определенных условиях. Реальный ма­ятник можно считать математическим, если длина нити много больше размеров подвешенного на ней тела, масса нити ничтожна мала по сравнению с массой тела, а деформации нити настолько малы, что ими вообще можно пренебречь.

Колебательную систему в данном случае образуют нить, присо­единенное к ней тело и Земля, без которой эта система не могла бы служить маятником.

где а х ускорение, g – ускорение свободного падения, х - смещение, l – длина нити маятника.

Это уравнение называется урав­нением свободных колебаний математического маятника. Оно правильно описывает рассматриваемые колебания лишь тогда, когда выполнены следующие предположения:

2) рассматриваются лишь малые колебания маятника с небольшим углом размаха.

Свободные колебания любых систем во всех слу­чаях описываются аналогичными уравнениями.

Причинами свободных колебаний математическо­го маятника являются:

1. Действие на маятник силы натяжения и силы тяжести, пре­пятствующей его смещению из положения равновесия и заставляю­щей его снова опускаться.

2. Инертность маятника, благодаря которой он, сохраняя свою скорость, не останавливается в положении равновесия, а проходит через него дальше.

Период свободных колебаний математического ма­ятника

Период свободных колебаний математического маятника не за­висит от его массы, а определяется лишь длиной нити и ускорением свободного падения в том месте, где находится маятник.

Превращение энергии при гармонических колебаниях

При гармонических колебаниях пружинного маятника проис­ходят превращения потенциальной энергии упруго деформированного тела в его кинетическую энергию , гдеk коэффициент упругости,х - модуль смещения маятника из поло­жения равновесия,m - масса маятника,v - его скорость. В соот­ветствии с уравнением гармонических колебаний:

, .

Полная энергия пружинного маятника:

.

Полная энергия для математического маятника:

В случае математического маятника

Превращения энергии при колебаниях пружинного маятника происходи в соответствии с законом сохранения механической энергии (). При движении маятника вниз или вверх от положения равновесия его потенциальная энергия увеличивается, а кинетическая - уменьшается. Когда маятник проходит положение равно­весия (х = 0), его потенциальная энергия равна нулю и кинетическая энергия маятника имеет наибольшее значение, равное его полной энергии.

Таким образом, в процессе свободных колебаний маятника его потенциальная энергия превращается в кинетическую, кинетическая в потенциальную, потенциальная затем снова в кинетическую и т. д. Но полная механическая энергия при этом остается неизменной.

Вынужденные колебания. Резонанс.

Колебания, происходящие под действием внеш­ней периодической силы, называются вынужден­ными колебаниями . Внешняя периодическая си­ла, называемая вынуждающей, сообщает колеба­тельной системе дополнительную энергию, которая идет на восполнение энергетических потерь, проис­ходящих из-за трения. Если вынуждающая сила изменяется во времени по закону синуса или коси­нуса, то вынужденные колебания будут гармониче­скими и незатухающими.

В отличие от свободных колебаний, когда система получает энергию лишь один раз (при выведении системы из со­стояния равновесия), в случае вынужден­ных колебаний система поглощает эту энергию от источника внешней периоди­ческой силы непрерывно. Эта энергия восполняет потери, расходуемые на пре­одоление трения, и потому полная энергия колебательной системы no-прежнему ос­тается неизменной.

Частота вынужденных колебаний равна часто­те вынуждающей силы . В случае, когда частота вынуждающей силы υ совпадает с собственной ча­стотой колебательной системы υ 0 , происходит рез­кое возрастание амплитуды вынужденных колеба­ний - резонанс . Резонанс возникает из-за того, что при υ = υ 0 внешняя сила, действуя в такт со свободными колебаниями, все время сонаправлена со скоростью колеблющегося тела и совершает по­ложительную работу: энергия колеблющегося те­ла увеличивается, и амплитуда его колебаний ста­новится большой. График зависимости амплитуды вынужденных колебаний А т от частоты вынужда­ющей силы υ представлен на рисунке, этот график называется резонансной кривой:

Явление резонанса играет большую роль в ря­де природных, научных и производственных про­цессов. Например, необходимо учитывать явление резонанса при проектировании мостов, зданий и других сооружений, испытывающих вибрацию под нагрузкой, в противном случае при определенных условиях эти сооружения могут быть разрушены.

Если тело, прикрепленное к пружине (рисунок 4), отклонить от положения равновесия на расстояние А, например, влево, то оно, пройдя через положение равновесия, отклонится вправо. Это следует из закона сохранения энергии.

Потенциальная энергия сжатой или растянутой пружины равна

где k - жесткость пружины и x - ее удлинение. В крайнем левом положении удлинение пружины x = - А, следовательно, потенциальная энергия равна

Кинетическая энергия в этот момент равна нулю, потому что нулю равна скорость. Значит, потенциальная энергия - это полная механическая энергия системы в этот момент. Если условиться, что сила трения равна нулю, а другие силы уравновешены, то нашу систему можно считать замкнутой и ее полная энергия при движении не может измениться. Когда тело при своем движении окажется в крайнем правом положении (x=А), Его кинетическая энергия снова будет равна нулю и полная энергия опять равна потенциальной. А полная энергия не может измениться. Значит, она снова равна

Это и означает, что и вправо тело отклонится на расстояние равное А.

В положении равновесия, напротив, потенциальная энергия равна нулю, потому что пружина не деформирована, х=0. В этом положении полная энергия тела равна его кинетической энергии

где m - масса тела и - его скорость (она в этот момент максимальна). Но эта кинетическая энергия тоже должна иметь значение равное. Следовательно, при колебательном движении происходит превращение кинетической энергии в потенциальную и обратно. В любой же точке между положениями равновесия и максимального отклонения тело обладает и кинетической энергией, и потенциальной, но их сумма, т.е. полная энергия в любом положении тела, равна. Полная механическая энергия W колеблющегося тела пропорциональна квадрату амплитуды и его колебаний

Маятники. Математический маятник

Маятником является всякое тело, подвешенное так, что его центр тяжести находится ниже точки подвеса. Значит груз, подвешенный на веревке, это колебательная система подобная маятнику настенных часов. У всякой системы, способной совершать свободные колебания, имеется устойчивое положение равновесия. У маятника - это то положение, при котором центр тяжести находится на вертикали под точкой подвеса. Если мы выведем маятник из этого положения или толкнем его, то он начнет колебаться, отклоняясь то в одну, то в другую сторону от положения равновесия. Мы знаем, что наибольшее отклонение от положения равновесия, до которого доходит маятник, называется амплитудой колебаний. Амплитуда определяется тем первоначальным отклонением или толчком, которым маятник был приведен в движение. Это свойство - зависимости амплитуды от условий в начале движения - характерно не только для свободных колебаний маятника, но и вообще для свободных колебаний очень многих колебательных систем.

Период колебаний физического маятника зависит от многих обстоятельств: от размеров и формы тела, от расстояния между центром тяжести и точкой подвеса и от распределения массы тела относительно этой точки; поэтому вычисление периода подвешенного тела - довольно сложная задача. Проще обстоит дело для математического маятника. Математическим маятником называется подвешенный к тонкой нити груз, размеры которого много меньше длины нити, а его масса манного больше массы нити. Это значит, что тело (груз) и нить должны быть такими, чтобы груз можно было считать материальной точкой, а нить невесомой. Из наблюдений над подобными маятниками можно установить следующие простые законы.

1. Если, сохраняя одну и ту же длину маятника (расстояние от точки подвеса до центра тяжести груза), подвешивать разные грузы, то период колебаний получится один и тот же, хотя массы грузов сильно различаются. Период математического маятника не зависит от массы груза.

2. Сида, действующая на тело в любой точке траектории, направлена к положению равновесия, а в самой точке равновесия равна нулю.

3. Сила пропорциональна отклонению тела от положения равновесия.

Рис. 5.

4. Если при пуске маятника отклонять его на разные (но не слишком большие) углы, то он будет колебаться с одним и тем же периодом, хотя и с разными амплитудами. Пока не слишком велики амплитуды, колебания достаточно близки по своей форме к гармоническим, и период математического маятника не зависит от амплитуды колебаний. Это свойство называется изохронизмом (от греческих слов «изос» - равный, «хронос» - время).

Впервые этот факт был установлен в 1655 г. Галилеем якобы при следующих обстоятельствах. Галилей наблюдал в Пизанском соборе качания паникадила (в православном храме центральная люстра, светильник со множеством свечей или лампад) на длинной цепи, которое толкнули при зажигании. В течение богослужения размахи качаний постепенно затухали (глава 8), т. е. амплитуда колебаний уменьшалась, но период оставался одним и тем же. В качестве указателя времени Галилей пользовался собственным пульсом.

Это свойство маятника оказалось не только удивительным, но и полезным. Галилей предложил использовать маятник в качестве регулятора в часах. Во времена Галилея часы приводились в действие грузом, а для регулировки хода применялось грубое приспособление типа лопастей ветряной мельницы, которое использовало сопротивление воздуха. Для отсчета равных промежутков времени можно было бы использовать маятник, ибо малые колебания совершаются за то же время, что и большие, вызываемые случайными порывами ветра. Столетие спустя после Галилея часы с маятниковым регулятором вошли в обиход, но мореплаватели по-прежнему нуждались в точных часах для измерения долготы на море. Была объявлена премия за создание таких морских часов, которые позволяли бы измерять время с достаточной точностью. Премию получил Гариссон за хронометр, в котором для регулирования хода использовались маховое колесо (баланс) и специальная пружина.

Выведем теперь формулу для периода колебаний математического маятника.

При качаниях маятника груз движется ускоренно по дуге ВА (рис. 5, а) под действием возвращающейся силы P 1 , которая меняется при движении.

Расчет движения тела под действием непостоянной силы довольно сложен. Поэтому для упрощения поступим следующим образом.

Заставим маятник совершать не колебание в одной плоскости, а описывать конус так, чтобы груз двигался по окружности (рис. 5, б). Это движение может быть получено в результате сложения двух независимых колебаний: одного - по-прежнему в плоскости рисунка и другого - в перпендикулярной плоскости. Очевидно, периоды обоих этих плоских колебаний одинаковы, так как любая плоскость качаний ничем не отличается от всякой другой. Следовательно, и период сложного движения - обращения маятника по конусу - будет тот же, что и период качания в одной плоскости. Этот вывод можно легко иллюстрировать непосредственным опытом, взяв два одинаковых маятника и сообщив одному из них качание в плоскости, а другому - вращение по конусу.

Но период обращения «конического» маятника равен длине описываемой грузом окружности, деленной на скорость:

Если угол отклонения от вертикали невелик (малые амплитуды!), то можно считать, что возвращающаяся сила Р 1 направлена по радиусу окружности ВС, т. е. равна центростремительной силе:

С другой стороны, из подобия треугольников ОВС и DBE следует, что ВЕ: BD=CB: OB. Так как ОВ=l, CB=r, BE=P 1 , то отсюда

Приравняв оба выражения Р 1 друг к другу, мы получаем для скорости обращения

Наконец, подставив это в выражение периода Т, находим

Итак, период математического маятника зависит только от ускорения свободного падения g и от длины маятника l, т. е. расстояния от точки подвеса до центра тяжести груза. Из полученной формулы следует, что период маятника не зависит от его массы и от амплитуды (при условии, что она достаточно мала). Другими словами, получились путем расчета те основные законы, которые были установлены ранее из наблюдений.

Но этот теоретический вывод дает нам больше: он позволяет установить количественную зависимость между периодом маятника, его длиной и ускорением свободного падения. Период математического маятника пропорционален корню квадратному из отношения длины маятника к ускорению свободного падения. Коэффициент пропорциональности равен 2?.

На зависимости периода маятника от ускорения свободного падения основан очень точный способ определения этого ускорения. Измерив длину маятника l и определив из большого числа колебаний период Т, мы можем вычислить с помощью полученной формулы g. Этот способ широко используется не практике.

маятник колебание резонанс координата

В технике и окружающем нас мире часто приходится сталкиваться с периодическими (или почти периодическими ) процессами, которые повторяются через одинаковые промежутки времени. Такие процессы называют колебательными .

Колебания – один из самых распространенных процессов в природе и технике. Крылья насекомых и птиц в полете, высотные здания и высоковольтные провода под действием ветра, маятник заведенных часов и автомобиль на рессорах во время движения, уровень реки в течение года и температура человеческого тела при болезни, звук - это колебания плотности и давления воздуха, радиоволны - периодические изменения напряженностей электрического и магнитного полей, видимый свет - тоже электромагнитные колебания, только с несколько иными длиной волны и частотой, землетрясения - колебания почвы, биение пульса - периодические сокращения сердечной мышцы человека и т.д.

Колебания бывают механические, электромагнитные, химические, термодинамические и различные другие. Несмотря на такое разнообразие, все они имеют между собой много общего.

Колебательные явления различной физической природы подчиняются общим закономерностям. Например, колебания тока в электрической цепи и колебания математического маятника могут описываться одинаковыми уравнениями. Общность колебательных закономерностей позволяет рассматривать колебательные процессы различной природы с единой точки зрения. Признаком колебательного движения является его периодичность .

Механические колебания – это движения, которые точно или приблизительно повторяются через одинаковые промежутки времени .

Примерами простых колебательных систем могут служить груз на пружине (пружинный маятник) или шарик на нити (математический маятник).

При механических колебаниях кинетическая и потенциальная энергии периодически изменяются.

При максимальном отклонении тела от положения равновесия его скорость, а следовательно, и кинетическая энергия обращаются в нуль . В этом положении потенциальная энергия колеблющегося тела достигает максимального значения . Для груза на пружине потенциальная энергия – это энергия упругих деформаций пружины. Для математического маятника – это энергия в поле тяготения Земли.

Когда тело при своем движении проходит через положение равновесия , его скорость максимальна. Тело проскакивает положение равновесия по закону инерции. В этот момент оно обладает максимальной кинетической и минимальной потенциальной энергией . Увеличение кинетической энергии происходит за счет уменьшения потенциальной энергии.

При дальнейшем движении начинает увеличиваться потенциальная энергия за счет убыли кинетической энергии и т. д.

Таким образом, при гармонических колебаниях происходит периодическое превращение кинетической энергии в потенциальную и наоборот .

Если в колебательной системе отсутствует трение, то полная механическая энергия при механических колебаниях остается неизменной.

Для груза на пружине :

В положении максимального отклонения полная энергия мятника равна потенциальной энергии деформированной пружины:

При прохождении положения равновесия полная энергия равна кинетической энергии груза:

Для малых колебаний математического маятника :

В положении максимального отклонения полная энергия мятника равна потенциальной энергии поднятого на высоту h тела:

При прохождении положения равновесия полная энергия равна кинетической энергии тела:

Здесь h m – максимальная высота подъема маятника в поле тяготения Земли, x m и υ m = ω 0 x m – максимальные значения отклонения маятника от положения равновесия и его скорости.

Гармонические колебания и их характеристики. Уравнение гармонического колебания.

Простейшим видом колебательного процесса являются простые гармонические колебания , которые описываются уравнением

x = x m cos (ωt + φ 0).

Здесь x – смещение тела от положения равновесия,
x m – амплитуда колебаний, то есть максимальное смещение от положения равновесия,
ω – циклическая или круговая частота колебаний,
t – время.

Характеристики колебательного движения.

Смещение х – отклонение колеблющейся точки от положения равновесия. Единица измерения – 1 метр.

Амплитуда колебаний А – максимальноеотклонение колеблющейся точки от положения равновесия. Единица измерения – 1 метр.

Период колебаний T минимальный интервал времени, за который происходит одно полное колебание, называется. Единица измерения – 1 секунда.

T=t/N

где t - время колебаний, N - количество колебаний, совершенных за это время.

По графику гармоническихколебаний можно определить период и амплитуду колебаний:

Частота колебаний ν – физическая величина, равная числу колебаний за единицу времени.

ν=N/t

Частота – величина, обратная периоду колебаний:

Частота колебаний ν показывает, сколько колебаний совершается за 1 с.Единица частоты – герц (Гц).

Циклическая частота ω – число колебаний за 2π секунды.

Частота колебаний ν связана с циклической частотой ω и периодом колебаний T соотношениями:

Фаза гармонического процесса – величина, стоящая под знаком синуса или косинуса в уравнении гармонических колебаний φ = ωt + φ 0 . При t = 0 φ = φ 0 , поэтому φ 0 называют начальной фазой .

График гармонических колебаний представляет собой синусоиду или косинусоиду.

Во всех трех случаях для синих кривых φ 0 = 0:



только большей амплитудой (x" m > x m);



красная кривая отличается от синей только значением периода (T" = T / 2);



красная кривая отличается от синей только значением начальной фазы (рад).

При колебательном движении тела вдоль прямой линии (ось OX ) вектор скорости направлен всегда вдоль этой прямой. Скорость движения тела определяется выражением

В математике процедура нахождения предела отношения Δх/Δt при Δt → 0 называется вычислением производной функции x (t ) по времени t и обозначается как x" (t ).Скорость равна производной функции х(t ) по времени t.

Для гармонического закона движения x = x m cos (ωt + φ 0) вычисление производной приводит к следующему результату:

υ х =x" (t )= ωx m sin (ωt + φ 0)

Аналогичным образом определяется ускорение a x тела при гармонических колебаниях. Ускорение a равно производной функции υ(t ) по времени t , или второй производной функции x (t ). Вычисления дают:

а х =υ х "(t) =x"" (t )= -ω 2 x m cos (ωt + φ 0)=-ω 2 x

Знак минус в этом выражении означает, что ускорение a (t ) всегда имеет знак, противоположный знаку смещения x (t ), и, следовательно, по второму закону Ньютона сила, заставляющая тело совершать гармонические колебания, направлена всегда в сторону положения равновесия (x = 0).

На рисунке приведены графики координаты, скорости и ускорения тела, совершающего гармонические колебания.

Графики координаты x(t), скорости υ(t) и ускорения a(t) тела, совершающего гармонические колебания.

Пружинный маятник.

Пружинным маятником называют груз некоторой массы m, прикрепленный к пружине жесткости k, второй конец которой закреплен неподвижно .

Собственная частота ω 0 свободных колебаний груза на пружине находится по формуле:

Период T гармонических колебаний груза на пружине равен

Значит, период колебаний пружинного маятника зависит от массы груза и от жесткости пружины.

Физические свойства колебательной системы определяют только собственную частоту колебаний ω 0 и период T . Такие параметры процесса колебаний, как амплитуда x m и начальная фаза φ 0 , определяются способом, с помощью которого система была выведена из состояния равновесия в начальный момент времени.

Математический маятник.

Математическим маятником называют тело небольших размеров, подвешенное на тонкой нерастяжимой нити, масса которой пренебрежимо мала по сравнению с массой тела.

В положении равновесия, когда маятник висит по отвесу, сила тяжести уравновешивается силой натяжения нити N. При отклонении маятника из положения равновесия на некоторый угол φ появляется касательная составляющая силы тяжести F τ = –mg sin φ. Знак «минус» в этой формуле означает, что касательная составляющая направлена в сторону, противоположную отклонению маятника.

Математический маятник.φ – угловое отклонение маятника от положения равновесия,

x = lφ – смещение маятника по дуге

Собственная частота малых колебаний математического маятника выражается формулой:

Период колебаний математического маятника:

Значит, период колебаний математического маятника зависит отдлины нити и от ускорения свободного падения той местности, где установлен маятник.

Свободные и вынужденные колебания.

Механические колебания, как и колебательные процессы любой другой физической природы, могут быть свободными и вынужденными .

Свободные колебания – это колебания, которые возникают в системе под действием внутренних сил, после того, как система была выведена из положения устойчивого равновесия.

Колебания груза на пружине или колебания маятника являются свободными колебаниями.

Для того, чтобы свободные колебания совершались по гармоническому закону, необходимо, чтобы сила, стремящаяся возвратить тело в положение равновесия, была пропорциональна смещению тела из положения равновесия и направлена в сторону, противоположную смещению .

В реальных условиях любая колебательная система находится под воздействием сил трения (сопротивления). При этом часть механической энергии превращается во внутреннюю энергию теплового движения атомов и молекул, и колебания становятся затухающими .

Затухающими называют колебания, амплитуда которых уменьшается со временем .

Чтобы колебания не затухали, необходимо сообщать системе дополнительную энегрию, т.е. воздействовать на колебательную систему периодической силой (например, для раскачивания качели).

Колебания, совершающиеся под воздействием внешней периодически изменяющейся силы, называются вынужденными .

Внешняя сила совершает положительную работу и обеспечивает приток энергии к колебательной системе. Она не дает колебаниям затухать, несмотря на действие сил трения.

Периодическая внешняя сила может изменяться во времени по различным законам. Особый интерес представляет случай, когда внешняя сила, изменяющаяся по гармоническому закону с частотой ω, воздействует на колебательную систему, способную совершать собственные колебания на некоторой частоте ω 0 .

Если свободные колебания происходят на частоте ω 0 , которая определяется параметрами системы, то установившиеся вынужденные колебания всегда происходят на частоте ω внешней силы .

Явление резкого возрастания амплитуды вынужденных колебаний при совпадении частоты собственных колебаний с частотой внешней вынуждающей силы называется резонансом .

Зависимость амплитуды x m вынужденных колебаний от частоты ω вынуждающей силы называется резонансной характеристикой или резонансной кривой .

Резонансные кривые при различных уровнях затухания:

1 – колебательная система без трения; при резонансе амплитуда x m вынужденных колебаний неограниченно возрастает;

2, 3, 4 – реальные резонансные кривые для колебательных систем с различным трением.

В отсутствие трения амплитуда вынужденных колебаний при резонансе должна неограниченно возрастать. В реальных условиях амплитуда установившихся вынужденных колебаний определяется условием: работа внешней силы в течение периода колебаний должна равняться потерям механической энергии за то же время из-за трения. Чем меньше трение, тем больше амплитуда вынужденных колебаний при резонансе.

Явление резонанса может явиться причиной разрушения мостов, зданий и других сооружений, если собственные частоты их колебаний совпадут с частотой периодически действующей силы, возникшей, например, из-за вращения несбалансированного мотора.

Повторение

Полная механическая энергия тела

\(W=W_{k} +W_{p1} +W_{p2}, \; \; \; W_{k} =\frac{m\cdot \upsilon ^{2} }{2}, \; \; \; W_{p1} =m\cdot g\cdot h, \; \; \; W_{p2} =\frac{k\cdot \Delta l^{2} }{2},\)

где W k - кинетическая энергия тела в данный момент времени (энергия движения), m - масса тела, υ - значение скорости тела в данный момент времени, W p 1 - потенциальная энергия тела, поднятого на высоту h , в данный момент времени (энергия взаимодействия), h - высота подъема тела в данный момент времени, W p 2 - потенциальная энергия деформированного тела в данный момент времени, Δl - абсолютное удлинение тела в данный момент времени.

Если в замкнутой системе нет внешних сил (например, силы трения), то полная механическая энергия замкнутой системы сохраняется.

Математический маятник

Рассмотрим превращения энергии при колебаниях математического маятника. Выберем систему отсчета таким образом, чтобы в положении равновесия его потенциальная энергия была равна нулю.

При колебаниях математического маятника изменяется высота h грузика относительно положения равновесия и изменяется его скорость υ (рис. 1). Причем при максимальных смещениях высота достигает максимального значения h max , а скорость становится равной нулю, в положении равновесия наоборот: высота тела равна нулю, а скорость достигает максимального значения υ max .

Так как высота тела определяет его потенциальную энергию W p \(\left(W_{p} =m\cdot g\cdot h\right),\) а скорость - кинетическую энергию W k \(\left(W_{k} =\frac{m\cdot \upsilon ^{2}}{2} \right),\) то вместе с изменением высоты и скорости, будут изменяться и энергии.

Обозначения в таблице:

\(W_{p\; \max } = m\cdot g\cdot h_{\max }, \; \; \; W_{p2} =m\cdot g\cdot h_{2}, \; \; \; W_{p4} =m\cdot g\cdot h_{4}, \; \; \; W_{p6} =m\cdot g\cdot h_{6},\)

Mex-majat-2-01.swf Рис. 3 Увеличить Flash

Пружинный маятник

Рассмотрим превращения энергии при колебаниях горизонтального пружинного маятника. Выберем систему отсчета таким образом, чтобы в положении равновесия его потенциальная энергия была равна нулю.

При колебаниях пружинного маятника изменяется абсолютное удлинение пружины Δl относительно положения равновесия (т.е. изменяется смещение грузика x = Δl ) и изменяется скорость грузика υ (рис. 3). Причем при максимальных смещениях абсолютное удлинение достигает максимального значения Δl max , а скорость становится равной нулю, в положении равновесия наоборот: абсолютное удлинение равно нулю, а скорость достигает максимального значения υ max .

Так как абсолютное удлинение пружины определяет ее потенциальную энергию W p \(\left(W_{p} =\frac{k\cdot \Delta l^{2}}{2} \right),\) а скорость - кинетическую энергию W k \(\left(W_{k} =\frac{m\cdot \upsilon ^{2}}{2} \right),\) то вместе с изменением абсолютного удлинения и скорости, будут изменяться и энергии.

Обозначения в таблице:

\(W_{p\; \max } =\frac{k\cdot x_{\max }^{2} }{2}, \;\;\; W_{p2} =\frac{k\cdot x_{2}^{2} }{2}, \;\;\; W_{p4} =\frac{k\cdot x_{4}^{2} }{2}, \;\;\; W_{p6} =\frac{k\cdot x_{6}^{2} }{2},\)

\(W_{k\; \max } =\frac{m\cdot \upsilon _{\max }^{2} }{2}, \; \; \; W_{k2} =\frac{m\cdot \upsilon _{2}^{2} }{2}, \; \; \; W_{k4} =\frac{m\cdot \upsilon _{4}^{2} }{2}, \; \; \; W_{k6} =\frac{m\cdot \upsilon _{6}^{2} }{2}.\)

Полная энергия маятника сохраняется с течением времени, поскольку нет силы трения. Тогда

\(W=W_{k\, \max } = W_{p\, \max } = W_{k2} + W_{p2} = W_{k4} +W_{p4} = ...\)

Mex-majat-2-02.swf Рис. 5 Увеличить Flash

Если для вертикального пружинного маятника выбрать систему отсчета таким образом, чтобы в положении равновесия его потенциальная энергия была равна нулю, то все описанное выше для горизонтального маятника можно применить для данного маятника.

Литература

  1. Жилко, В.В. Физика: учеб. Пособие для 11 класса общеобразоват. шк. с рус. яз. обучения / В.В.Жилко, Л.Г.Маркович. - Минск: Нар. Асвета, 2009. - С. 19-21.


Публикации по теме