Законы ньютона формулировка и формулы. Первый закон ньютона

Говорится о поведении тела, изолированного от воздействия других тел. Второй закон говорит о прямо противоположной ситуации. В нем рассматриваются случаи, когда тело или несколько тел воздействуют на данное.

Оба эти закона описывают поведение одного конкретного тела. Но во взаимодействии всегда участвуют минимум два тела. Что будет происходить с обоими этими телами? Как описать их взаимодействие? Анализом этой ситуации и занялся Ньютон после формулировки своих первых двух законов. Займемся и мы такими же изысканиями.

Взаимодействие двух тел

Мы знаем, что при взаимодействии воздействуют друг на друга оба тела. Не бывает такого, чтобы одно тело толкнуло другое, а второе в ответ никак не отреагировало бы. Такое может происходить среди по-разному воспитанных людей, но никак не в природе.

Мы знаем, что если мы пинаем мяч, то мяч в ответ пинает нас. Другое дело, что мяч имеет намного меньшую массу, чем тело человека, и потому его воздействие практически не ощутимо.

Однако, если вы попробуете пнуть тяжелый железный мяч, то живо ощутите это ответное воздействие. Фактически, мы каждый день по многу раз пинаем очень и очень тяжелый мяч нашу планету. Мы толкаем ее каждым своим шагом, только при этом отлетает не она, а мы. А все потому, что планета в миллионы раз превосходит нас по массе.

Соотношение сил во взаимодействии между телами

Так что из этих рассуждений видно, что при взаимодействии двух тел, не только первое действует на второе с некоторой силой, но и второе в ответ действует на первое также с некоторой силой. Возникает вопрос: а как соотносятся эти силы? Какая из них больше, какая меньше?

Для этого необходимо проделать некоторые измерения. Потребуются два динамометра, но в домашних условиях их вполне могу заменить два безмена. Они измеряют вес, а вес это тоже сила, только выраженная в единицах массы в случае безмена. Поэтому, если у вас есть два безмена, то проделайте следующее.

Один из них оденьте колечком на что-то неподвижное, например, на гвоздь в стене, а второй соедините с первым крючками. И потяните за колечко второго безмена. Проследите за показаниями обоих приборов. Каждый из них покажет силу, с которой на него воздействует другой безмен.

И хотя мы тянем только за один из них, окажется, что показания обоих, как на очной ставке, будут совпадать. Получается, что сила, с которой мы воздействуем вторым безменом на первый, равна силе, с которой первый безмен воздействует на второй.

Третий закон Ньютона: определение и формула

Сила действия равна силе противодействия . В этом и состоит суть третьего закона Ньютона. Определение его таково: силы, с которыми два тела действуют друг на друга, равны по величине и противоположны по направлению. Третий закон Ньютона можно записать в виде формулы:

F_1 = - F_2,

Где F_1 и F_2 силы действия друг на друга соответственно первого и второго тела.

Справедливость третьего закона Ньютона была подтверждена многочисленными экспериментами. Этот закон справедлив как для случая, когда одно тело тянет другое, так и для случая, когда тела отталкиваются. Все тела во Вселенной взаимодействуют друг с другом, подчиняясь этому закону.

В своем первом законе Ньютон описал состояние тела, не подверженного действию других тел. В этом случае тело либо сохраняет свое состояние покоя, либо движется равномерно и прямолинейно (относительно инерциальной системы отсчета).

Во втором законе Ньютона речь идет о прямо противоположной ситуации. Теперь на данное тело действуют внешние тела, причем их количество может быть произвольным. Под действием окружающих тел рассматриваемое тело начинает двигаться с ускорением, причем произведение массы данного тела на его ускорение оказывается равным действующей силе.

Сформулировав эти два закона, Ньютон обратился к анализу ситуации, когда во взаимодействии участвуют только два тела. Допустим, имеются два тела А и В, которые притягивают друг друга с некоторыми силами F и F". Может ли одна из этих сил быть больше другой? Размышление над этой проблемой привело Ньютона к выводу, что такого быть не может: силы взаимодействия двух тел всегда равны друг другу. Каким образом Ньютон пришел к этому заключению? Вот как он рассуждал:

«Относительно притяжения дело может быть изложено вкратце следующим образом: между двумя взаимопритягивающимися телами надо вообразить помещенным какое-либо препятствие, мешающее их сближению. Если бы одно из тел А притягивалось телом В сильнее, нежели тело В притягивается телом А, то препятствие испытывало бы со стороны тела А большее давление, нежели со стороны тела В, и, следовательно, не осталось бы равновесия. Преобладающее давление вызвало бы движение системы, состоящей из этих двух тел и препятствия в сторону тела В, ив свободном пространстве эта система, двигаясь ускоренно, ушла бы в бесконечность. Такое заключение нелепо и противоречит первому закону... Отсюда следует, что оба тела давят на препятствие с равными силами, а значит, и притягиваются взаимно с таковыми же».

Опыты подтверждают вывод Ньютона. Если, например, взять две тележки и на одной из них закрепить магнит, а на другой - кусок железа, а затем соединить их с динамометрами, то мы увидим, что показания этих приборов совпадут (рис. 13). Это означает, что сила, с которой магнит притягивает к себе железо, равна по величине силе, с которой железо притягивает к себе магнит. Эти силы имеют равные числовые значения, но противоположные направления: сила притяжения к магниту направлена влево, а сила притяжения к железу - вправо.

Силы, с которыми взаимодействуют любые два тела, всегда равны по величине и противоположны по направлению.

Это утверждение является третьим законом Ньютона . Третий закон Ньютона обосновывает введение самого термина «взаимодействие»: если одно тело действует на другое, то второе также действует на первое. Другими словами, не может быть такого, чтобы одно тело на другое действовало, а второе на первое - нет. Как писал сам Ньютон, «действию всегда есть равное и противоположное противодействие»; в частности, «если кто нажимает пальцем на камень, то и палец его также нажимается камнем. Если лошадь тащит камень, привязанный к канату, то и обратно (если можно так выразиться) она с равным усилием оттягивается к камню».

Из третьего закона Ньютона следует, что вес тела, т. е. сила, с которой тело давит на свою опору (или растягивает подвес), совпадает по величине с силой, действующей со стороны опоры на данное тело_ Сила, с которой опора давит на находящееся на ней тело, называется силой реакции опоры . Обозначив силу реакции опоры через N, мы можем записать:

Соответствующая ситуация изображена на рисунке 14.

Полученная формула является более общей, чем P=mg, так как она остается справедливой и в том случае, когда тело вместе с опорой совершает ускоренное движение.

Закономерность, выражаемую формулой (9.1), можно проверить на опыте. Возьмем два демонстрационных динамометра с круглым циферблатом и поставим их друг на друга (рис. 15). Мы увидим, что верхний прибор покажет точно такую же силу, что и нижний.

Следует помнить, что силы взаимодействия, о которых говорится в третьем законе Ньютона, не могут быть приложены к одному и тому же телу: это есть силы, с которыми тела действуют друг на друга (рис. 16).

Когда Ньютона спросили, каким путем он пришел к своим открытиям, Ньютон ответил: «Всегда думал о них. Предмет исследования постоянно передо мной, и я жду, пока первые пробивающиеся лучи рассвета постепенно не осветят его сильным и ярким светом».

О том, какой титанический труд стоял на самом деле за этим «ожиданием рассвета», рассказал впоследствии его секретарь Гэмфри: «Он (Ньютон) постоянно был занят работой... Он не позволял себе никакого отдыха и передышки, не ездил верхом, не гулял, не играл в кегли, не занимался спортом; он считал потерянным всякий час, не посвященный занятиям. Редко уходил он из своей комнаты, за исключением только тех случаев, когда ему надо было читать лекции как люкасовскому профессору. Лекции мало кто посещал и еще меньше того понимал. Часто приходилось читать перед пустыми стенами... Занятиями он увлекался настолько, что часто забывал обедать. Нередко, заходя в его комнату, я находил обед нетронутым на столе, и только после моего напоминания он стоя что-нибудь съедал... Раньше двух-трех часов он редко ложился спать, а в некоторых случаях засыпал только в пять, шесть часов утра. Спал он всегда четыре или пять часов, особенно осенью и весной. Судя по его озабоченности и постоянной работе, думаю, что он стремился перейти черту человеческой силы и искусства».

Отдавая дань трудам своих великих предшественников, Ньютон говорил, что если он и «видел дальше, чем другие, то лишь потому, что стоял на плечах гигантов». А незадолго до смерти он написал: «Не знаю, каким представляет себе меня мир, но самому себе я кажусь просто ребенком, который играет на морском берегу и забавляется, отыскивая лучше обкатанные камешки или более красивые, чем обычно, ракушки, в то время как великий океан истины лежит передо мной совершенно неразгаданный».

На статуе, воздвигнутой Ньютону в Кембридже, помещена надпись: «Разумом он превосходил род человеческий». Слава Ньютона была настолько велика, что известный математик Лопиталь еще при жизни Ньютона удивлялся тому, что этот великий человек мог есть, пить и спать, как прочие люди. А в Вестминстерском аббатстве, где похоронен Ньютон, на памятнике ему можно прочитать такие слова: «Пусть смертные радуются, что существовало такое украшение рода человеческого».

Влияние взглядов Ньютона на дальнейшее развитие физики огромно. «Ньютон, - писал академик С. И. Вавилов, - заставил физику мыслить по-своему, «классически», как мы выражаемся теперь. На языке Ньютона мы думали и говорили, и только теперь делаются попытки изобрести новый язык. Вот почему можно утверждать, что на всей физике лежал индивидуальный отпечаток его мысли; без Ньютона наука развивалась бы иначе».

1. Сформулируйте третий закон Ньютона. 2. Предположим, что муха, летящая навстречу автомобилю, ударилась о его лобовое стекло. Автомобиль или муха действовали с большей силой в момент столкновения? 3. Известно, что Земля притягивает к себе все находящиеся вблизи нее тела. Притягивают ли эти тела Землю? 4. Что сильнее притягивает: яблоко Землю или Земля яблоко? 5. С какой силой численно совпадает вес тела согласно третьему закону Ньютона?

ОПРЕДЕЛЕНИЕ

Формулировка третьего закона Ньютона . Два тела действуют друг на друга с , равными по модулю и противоположными по направлению. Эти силы имеют одну и ту же физическую природу и направлены вдоль прямой, соединяющей их точки приложения.

Описание третьего закона Ньютона

Например, книга, лежащая на столе, действует на стол с силой, прямо пропорциональной своей и направленной вертикально вниз. Согласно третьему закону Ньютона стол в это же время действует на книгу с абсолютно такой же по величине силой, но направленной не вниз, а вверх.

Когда яблоко падает с дерева, это Земля действует на яблоко силой своего гравитационного притяжения (вследствие чего яблоко равноускоренно движется к поверхности Земли), но при этом и яблоко притягивает к себе Землю с такой же силой. А то, что нам кажется, что это именно яблоко падает на Землю, а не наоборот, является следствием . Масса яблока по сравнению с массой Земли мала до несопоставимости, поэтому именно яблока заметно для глаз наблюдателя. Масса же Земли, по сравнению с массой яблока, огромна, поэтому ее ускорение практически незаметно.

Аналогично, если мы пинаем мяч, то мяч в ответ пинает нас. Другое дело, что мяч имеет намного меньшую массу, чем тело человека, и потому его воздействие практически не чувствуется. Однако если пнуть тяжелый железный мяч, ответное воздействие хорошо ощущается. Фактически, мы каждый день по многу раз «пинаем» очень и очень тяжелый мяч — нашу планету. Мы толкаем ее каждым своим шагом, только при этом отлетает не она, а мы. А все потому, что планета в миллионы раз превосходит нас по массе.

Таким образом, третий закон Ньютона утверждает, что силы как меры взаимодействия всегда возникают парами. Эти силы не уравновешиваются, так как всегда приложены к разным телам.

Третий закон Ньютона выполняется только в и справедлив для сил любой природы.

Примеры решения задач

ПРИМЕР 1

Задание На полу лифта стоит груз массой 20 кг. Лифт движется с ускорением м/с , направленным вверх. Определить силу, с которой груз будет действовать на пол лифта.
Решение Сделаем рисунок

На груз в лифте действуют сила тяжести и сила реакции опоры .

По второму закону Ньютона:

Направим координатную ось , как показано на рисунке и запишем это векторное равенство в проекциях на координатную ось:

откуда сила реакции опоры:

Груз будет действовать на пол лифта с силой, равной его весу. По третьему закону Ньютона, эта сила равна по модулю силе, с которой пол лифта действует на груз, т.е. силе реакции опоры:

Ускорение свободного падения м/с

Подставив в формулу численные значения физических величин, вычислим:

Ответ Груз будет действовать на пол лифта с силой 236 Н.

ПРИМЕР 2

Задание Сравнить модули ускорений двух шаров одинакового радиуса во время взаимодействия, если первый шар сделан из стали, а второй – из свинца.
Решение Сделаем рисунок

Сила удара, с которой второй шар действует на первый:

а сила удара, с которой первый шар действует на второй:

По третьему закону Ньютона, эти силы противоположны по направлению и равны по модулю, поэтому можно записать.

Раздел механики, в котором изучают, как взаимодействие тел влияет на их движение, называют динамикой .

Основные законы динамики открыли итальянский ученый Галилео Галилей и английский ученый Исаак Ньютон. Вы изучали эти законы в курсе физики основной школы. Напомним их.

1. Первый закон ньютона (закон инерции)

Повторим один из опытов, которые поставил итальянский ученый Галилео Галилей.

Поставим опыт
Будем скатывать шар по наклонной плоскости и наблюдать за его дальнейшим движением по горизонтальной поверхности.
Если она посыпана песком, шар остановится очень скоро (рис. 13.1, а).
Если она покрыта тканью, шар катится значительно дольше (рис. 13.1, б).
А вот по стеклу шар катится очень долго (рис. 13.1, в).

На основании этого и подобных опытов Галилей открыл закон инерции: если на тело не действуют другие тела или действия других тел скомпенсированы, то тлело движется равномерно и прямолинейно или покоится.

Сохранение скорости тела, когда на него не действуют другие тела или действия других тел скомпенсированы, называют явлением инерции .

1. Почему при встряхивании мокрого зонта с него слетают капли воды?

Особенно красиво смотрится явление инерции в фигурном катании (рис. 13.2).

Закон инерции называют также первым законом Ньютона , потому что Ньютон включил его в качестве первого закона в систему трех законов динамики, которые называют «тремя законами Ньютона».

Инерциальные системы отсчета

Закон инерции выполняется с хорошей точностью в системе отсчета, связанной с Землей. Но он не выполняется, например, в системе отсчета, связанной с тормозящим автобусом: при резком торможении пассажиры отклоняются вперед, хотя на них не действуют направленные вперед силы.
Системы отсчета, в которых выполняется закон инерции, называют инерциальными.

Инерциальных систем отсчета бесконечно много. Ведь если некоторая система отсчета является инерциальной, то инерциальной будет любая другая система отсчета, движущаяся относительно нее прямолинейно и равномерно.

Сформулируем теперь первый закон Ньютона с указанием систем отсчета, в которых он выполняется.

Существуют системы отсчета (называемые инерциальными), относительно которых тела сохраняют свою скорость неизменной, если на них не действуют другие тела или действия других тел скомпенсированы .

Изучать влияние взаимодействия тел на их движение удобнее всего именно в инерциальных системах отсчета, потому что в этих системах отсчета изменение скорости тела обусловлено только действием других тел на это тело.

Принцип относительности Галилея

Как показывает опыт, во всех инерциальных системах отсчета все механические явления протекают одинаково при одинаковых начальных условиях.

Это утверждение называют принципом относительности Галилея .

В справедливости принципа относительности Галилея легко убедиться, сидя в поезде, который плавно движется с постоянной скоростью. В таком случае все опыты с механическими явлениями, поставленные в вагоне, дадут одинаковые результаты независимо от того, едет поезд или стоит: например, лежащее на столе яблоко будет покоиться, а свободно падающие предметы будут падать вертикально вниз (относительно вагона!).

Поэтому пассажир может определить, едет поезд или стоит на станции, только посмотрев в окно (рис. 13.3).

2. Второй закон ньютона

Равнодействующая

Как вы уже знаете из курса физики основной школы, силы – векторные величины: каждая сила характеризуется числовым значением (модулем) и направлением. Силы измеряют с помощью динамометров. Единицей силы в СИ является 1 ньютон (Н). Определение ньютона мы дадим позже.

Если на тело, которое можно считать материальной точкой, действуют несколько сил, то их можно заменить одной силой, которая является векторной суммой этих сил. Ее называют равнодействующей.

На рисунке 13.4 показано, как найти равнодействующую двух сил: а

2. К телу приложены две силы, равные по модулю 1 Н и 2 Н. Отвечая на следующие вопросы, сделайте пояснительные чертежи.
а) Какое наименьшее значение может принимать равнодействующая этих сил? Как направлены силы в этом случае?
б) Какое наибольшее значение может быть у равнодействующей этих сил? Как направлены силы в атом случае?
в) Может ли равнодействующая этих сил быть равной 2 Н?

3. К телу приложены две силы, равные по модулю 3 Н и 4 Н. Может ли их равнодействующая быть равной 5 Н? Если да, то чему в этом случае равен угол между приложенными силами?

4. К телу приложены три равные по модулю силы по 1 Н каждая. Как они должны быть направлены, чтобы:
а) равнодействующая была равна 1 Н?
б) равнодействующая была равна нулю?
в) равнодействующая была равна 2 Н?

Масса тела

В курсе физики основной школы рассказывалось также об опытах, которые доказывают, что под действием постоянной силы тело движется с постоянным ускорением.

Коэффициент пропорциональности между силой и ускорением характеризует инертные свойства тела и называется массой тела. Чем больше масса тела, тем большую силу надо приложить к телу, чтобы сообщить ему то же ускорение.

Единицей массы в СИ является 1 килограмм (кг). Это масса эталона, хранящегося в Международном бюро мер и весов (Франция). Приближенно можно считать, что одному килограмму равна масса 1 л воды.

Обозначают массу буквой m.

Второй закон Ньютона

Соотношение между равнодействующей всех сил, приложенных к телу, массой тела и его ускорением Ньютон сформулировал как второй из трех основных законов механики.

Равнодействующая всех сил, приложенных к телу, равна произведению массы тела на его ускорение:

В инерциальной системе отсчета сила является причиной ускорения, поэтому второй закон Ньютона часто записывают так:

Итак, приобретаемое телом ускорение прямо пропорционально равнодействующей приложенных к телу сил, одинаково с ней направлено и обратно пропорционально массе тела.

Заметим, что второй закон Ньютона справедлив только в инерциальных системах отсчета. Напомним: в этих системах отсчета ускорение тела обусловлено только действием на него других тел.

Единицу силы в СИ определяют на основе второго закона Ньютона: сила в 1 ньютон сообщает телу массой 1 кг ускорение 1 м/с 2 . Поэтому 1 Н = 1 кг * м/с 2 .

Сила тяжести

Как вы уже знаете, под действием притяжения Земли все тела падают с одинаковым ускорением – ускорением свободного падения . Силу притяжения, действующую на тело со стороны Земли, называют силой тяжести и обозначают т.

Когда тело свободно падает, на него действует только сила тяжести, поэтому она и является равнодействующей всех приложенных к телу сил. При атом тело движется с ускорением , поэтому из второго закона Ньютона получаем:

5. С какой силой Земля притягивает:
а) килограммовую гирю?
б) человека массой 60 кг?

Сила, скорость и ускорение – кто «третий лишний»?

Неочевидное следствие второго закона Ньютона состоит в том, что он утверждает: направление ускорения тела совпадает с направлением равнодействующей приложенных телу сил. Скорость же вела может быть при этом направлена как угодно!

Поставим опыт

Бросим шарик вниз, затем – вверх, а потом – под углом к горизонту (рис. 13.5)

На шарик во время всего движения действует только направленная вниз сила тяжести. Однако в первом случае (а) скорость шарика совпадает по направлению с этой силой, во втором случае (б) – скорость вначале противоположна силе тяжести, а в третьем (в) – скорость направлена под углом к силе тяжести (например, в верхней точке траектории скорость перпендикулярна силе тяжести).

6. Тело равномерно движется по окружности. Чему равен угол между скоростью тела и равнодействующей?

7. Чему равен угол между скоростью автомобиля и равнодействующей приложенных к нему сил, когда автомобиль:
а) разгоняется на прямой дороге?
б) тормозит на прямой дороге?
в) движется равномерно по дуге окружности?

3. Третий закон ньютона

Поставим опыт

Предложим первокласснику и десятикласснику посоревноваться в перетягивании каната, стоя на скейтбордах: тогда трением между колесами и полом можно пренебречь (схема опыта показана на рисунке 13.6).

Мы увидим, что оба соперника движутся с ускорением. Значит, на каждого из них действу другого. Ускорения соперников направлено противоположно, причем ускорение первоклассника намного больше ускорения десятиклассника.

Точные опыты, подобные описанном выше, показывают, что модули ускорений обратно пропорциональны массам тел :

a 1 /a 2 = m 2 /m 1 .

Поскольку ускорения направлены противоположно,

Согласно второму закону Ньютона m 1 1 = 1 и m 2 2 = 2 , где 1 – сила, действующая на первое тело со стороны второго, а 2 – сила, действующая на второе тело со стороны первого.

Из соотношения (5) следует, что 1 = – 2 . Это и есть третий закон Ньютона.

Тела взаимодействуют друг с другом с силами, равными по модулю и противоположными по направлению.

Свойстве сил, с которыми тела взаимодействуют друг с другом:
– эти силы обусловлены одним и тем же взаимодействием и поэтому имеют одну и ту же физическую природу;
– эти силы направлены вдоль одной прямой;
– эти силы приложены к разным телам и поэтому не могут уравновешивать друг друга.

Примеры проявления третьего закона Ньютона

Когда камень падает на Землю, на него действует сила тяжести 1 со стороны Земли, а на Землю – сила 2 притяжения со стороны камня (рис. 13.7, для наглядности масштаб не соблюден). Обе эти силы относятся к силам всемирного тяготения.

8. Согласно третьему закону Ньютона F 1 = F 2 . Почему же ускорение камня заметно, а ускорение Земли – нет?

Когда камень лежит на Земле, на него кроме силы тяжести, которую будем обозначать теперь т, действует еще направленная вверх сила давления со стороны опоры (рис. 13.8, а). Она направлена перпендикулярно поверхности опоры, поэтому ее называют силой нормальной реакции (перпендикуляр называют часто нормалью). (Когда тело можно считать материальной точкой, все действующие на него силы желательно изображать на чертежах приложенными в одной точке.)

Когда камень покоится, его ускорение равно нулю. Значит, согласно второму закону Ньютона равнодействующая приложенных к камню сил и т, равна нулю (будем говорить, что в таком случае силы уравновешивают друг друга):

Отсюда следует:

Опора давит на камень силой , направленной вверх, а камень, по третьему закону Ньютона, давит на опору силан , направленной вниз (рис. 13.8, 6). Обе эти силы – силы упругости.

Силу, с которой тело вследствие действия на него силы тяжести давит на горизонтальную опору или растягивает вертикальный поднес, называют весом тела.

Итак, – это вес камня. По третьему закону Ньютона

Из формул (8) и (9) следует:

Итак, вес покоящегося тела равен действующей на это тело силе тяжести. Однако несмотря на это вес и сила тяжести существенно отличаются друг от друга:
– эти силы приложены к разным телам: вес действует на опору или поднес, а сила тяжести – на само тело;
– эти силы имеют разную физическую природу: вес – это сила упругости, а сила тяжести – проявление сил всемирного тяготения.

Кроме того, как мы увидим несколько позже (§ 16), вес может быть не равен силе тяжести и даже быть равным нулю.


Дополнительные вопросы и задания

9. Ускорение тела в некоторой инерциальной системе отсчета равно 3 м/с2 и направлено вдоль оси x. Чему равно ускорение этого тела в инерциальной системе отсчета, движущейся относительно заданной со скоростью 4 м/с, направленной вдоль оси y? Есть ли здесь лишние данные?

10. Брусок массой 0,5 кг соскальзывает с наклонной плоскости с углом наклона 30º. Скорость бруска увеличивается. Ускорение бруска равно 2 м/с 2 . Изобразите на чертеже равнодействующую приложенных к бруску сил. Чему она равна? Есть ли в задаче лишние данные?

11. Зависимость координаты x автомобиля от времени выражается в единицах СИ формулой x = 20 – 10t + t 2 . Ось x направлена вдоль дороги, масса автомобиля 1 т.
а) Чему равна равнодействующая приложенных к автомобилю сил?
б) Как она направлена в начальный момент – в направлении скорости автомобиля или противоположно ей?

12. Автомобиль массой 1 т едет со скоростью 72 км/ч по выпуклому мосту, имеющему форму дуги окружности радиусом 50 м. Сделайте чертеж и ответьте на вопросы.
а) Чему равна и как направлена равнодействующая сил, приложенных к автомобилю в верхней точке моста?
б) Какие силы действуют на автомобиль в этой точке? Как они направлены и чему они равны?
в) Во сколько раз вес автомобиля в верхней точке моста меньше действующей на автомобиль силы тяжести?

Об исторических конях запрета безопорного движения

Ньютон сформулировал три основных закона механики в 1689 году в своем фундаментальном труде «Математические начала натуральной философии», где в частности описывает знаменитый третий закон и следствия из него :
«Действию всегда есть равное и противоположное противодействие, иначе – взаимодействие двух тел друг на друга между собою равны и направлены в противоположные стороны.»

Чуть ниже Ньютон поясняет, почему он сформулировал свой третий закон механики именно в таком виде [там же]:
«Если какое-нибудь тело, ударившись в другое тело, изменяет своею силою его количество движения на сколько-нибудь, то оно претерпит силы второго рода в своем собственном количестве движения то же самое изменение, но обратно направленное, ибо давления этих тел друг на друга постоянно равны.»

Это пояснение указывает нам, что Ньютон выводил свой третий закон из анализа ударного взаимодействия двух тел.

Этот вывод подтверждается им самим в обосновании третьего следствия из рассматриваемого закона, где он описывает опыт с взаимодействием двух шаров с разной массой подвешенных на нитях. Иными словами третий закон Ньютона фактически есть следствие закона сохранения импульса, который описывается следующим выражением:

Р(11) + р(21) = р(12) + р(22)
где
р(11) – количество движения первого тела до взаимодействия;
р(21) – количество движения второго тела до взаимодействия;
р(12) – количество движения первого тела после взаимодействия;
р(22) – количество движения второго тела после взаимодействия.

Р = m * u
где
m – масса тела;
u – скорость тела.

Теперь рассмотрим случай, когда массу второго тела по отношению к первому можно рассматривать как бесконечность, например, стена дома, а второе тело небольшим, например, футбольный мяч, который не может причинить стене ни какого ущерба. Тогда скорости второго тела до взаимодействия и после равны между собой и соответственно равны нулю, так как стена ни до, ни после взаимодействия никуда не двигается. В этом случае закон сохранения импульса принимает вид:

Р(11) = р(12)
Разделив правую и левую часть уравнения на время получаем:
р(11)/t = р(12)/t
F(11) = F(12)
F(11) - F(12) = 0

В этом случае мы можем утверждать, что сила взаимодействия меча со стеной равна по модулю и обратна по направлению силе с которой стена воздействует на мяч. А это уже по сути своей и есть третий закон Ньютона.

И в этом выводе ни кто не видит никакого подвоха. Все математически верно и физически логично. Но в том то и дело, что в этом выводе на первое место вышла математическая интерпретация рассмотренного события, а его физическая суть оказалась не различимой.
На самом деле второе тело, в нашем случае это стена, физически никакого участия в формировании импульса обратного движения не принимает, оно лишь не позволило первому телу (мячу) двигаться дальше. Но в силу первого закона Ньютона, любое тело находится в прямолинейном движении до тех пор пока другое тело не станет для него препятствием и не изменит направление его движения. Поэтому второе тело став препятствием изменяет направление движения первого тела, но не сообщает ему ни какого дополнительного действия. Таким образом, мяч продолжает свое движение, только изменив его направление. Это хорошо видно на примере рикошета, когда одно тело отскакивает от другого под углом равным углу контакта.

Рассмотрим другую ситуацию. Два тела с одинаковой массой и противоположным направлением движения взаимодействуют друг с другом.
Тогда после столкновения мы имеем два события:
F(11) = F(12) и F(21) = F(22)
Иными словами оба тела сохранили свое движение, но при этом изменили его направление. Ни какого обмена импульсами в этом случае между ними не произошло.

Итак, подведем итог. Третий закон Ньютона, в том виде в котором он им сформулирован описывает лишь частный случай взаимодействия двух тел, при этом за его рамками остаются не рассмотренными множество других случаев такого взаимодействия. Например, мы ударим по стене не футбольным мечом, а огромным металлическим шаром, которым строители разрушают старые здания. В этом случае часть стены начнет двигаться вместе с ядром. То есть ни какого равного противодействия ядро не испытало на себе, а просто проломив преграду продолжило свое движение, а стена при этом просто исчезла с его пути.

Далее Ньютон приводит очень важное четвертое следствие из третьего закона :
«Центр тяжести системы двух или нескольких тел от взаимодействия друг друга не изменяет ни своего состояния покоя, ни движения; поэтому центр тяжести системы всех действующих друг на друга тел (при отсутствии внешних действий и препятствий) или находится в покое, или движется равномерно и прямолинейно.»

Пояснения этой формулировке Ньютон дает ниже [там же]:
«… так как в системе двух тел, действующих друг на друга, расстояние центра тяжести каждого из них до общего центра тяжести системы обратно пропорционально массам тел, то относительные количества движения, с которыми оба тела или приближаются к этому центру, или от него удаляются, между собой равны. В следствии этого, сказанный центр тяжести системы не претерпит от происходящих в противоположных направлениях равных изменений количеств движения, вызываемых действием тел друг на друга, ни ускорения, ни замедления в своем движении и не изменит своего состояния покоя или равномерного и прямолинейного движения.»

Поскольку четвертое следствие третьего закона Ньютона является краеугольным камнем всех официальных и не официальных противников безопорного движения рассмотрим его более подробно.
Первый абзац пояснения описывает случай, когда два тела связанных между собой пропорционально изменяют свое положение относительно общего центра тяжести системы, при чем эти изменения равны по модулю и обратны по направлению. Иными словами исходя из формулировки третьего закона, любое действие внутри системы вызывает отклик равный по модулю и противоположный по направлению, в результате суммарный импульс всей системы равен нулю.
Сегодня теоретическая механика формулирует это положение более четко:
Если главный вектор, и главный крутящий момент системы равны нулю, то система находится либо в покое, либо в равномерном прямолинейном движении, и никакое преобразование внутренних сил не может вывести её из этого состояния.

После этого реализацию безопорного движения можно считать бесполезным занятием. Как собственно и считают большинство ученых и специалистов, поэтому до сих пор этот вид движения человечеством и не освоен.
Но, слава богу, среди специалистов всегда есть сомневающиеся, желающие проверить верность общеизвестных истин и среди них надо назвать нашего соотечественника, которого сегодня можно с уверенностью назвать патриархом безопорного движения в нашей стране, а возможно и за её пределами, – это Владимир Николаевич Толчин. Он не только не был признан современниками, но фактически был ими ошельмован. Но именно он своим подвижническим трудом заложил зерна сомнения в непогрешимости третьего закона Ньютона. В дальнейшем, у него нашлось много последователей, но ни кто из них не осмелился сказать: «А король то голый». Сегодня я впервые предпринимаю эту попытку.

Рассматривая внутреннюю сущность третьего закона Ньютона, мы приходим к выводу, что он описывает лишь частный случай общего взаимодействия двух тел. Именно в рамках этого частного случая и надо рассматривать четвертое следствие этого закона. То есть исходя из предположения, что все внутренние силы механической системы уравновешены между собой и их главный вектор и главный крутящий момент равны нулю. Но если внутри системы создать условие, когда один элемент относительно других будет обладать некомпенсированной силой, то либо главный вектор, либо главный крутящий момент будут отличны от нуля.

Поэтому третий закон Ньютона должен быть сформулирован по иному, через условие векторной суммы внутренних сил:
1. Если векторная сумма внутренних сил механической системы равна нулю, то она находится в покое, либо равномерном прямолинейном движении, т.е. в уравновешенном пространственном положении.
2. Если векторная сумма внутренних сил механической системы равна нулю и при этом она испытывает на себе воздействие внешних сил, то она может изменить свое уравновешенное положение в пространстве.
3. Если векторная сумма внутренних сил механической системы отлична от нуля, то она может изменить свое уравновешенное положение в пространстве не зависимо от воздействия на неё внешних сил.

Таким образом, третий закон механики в обобщенном виде не запрещает безопорного движения, а лишь определяет условия, при котором оно возможно. Внутри механической системы должна существовать внутренняя некомпенсированная сила, которая влияет на главный вектор механической системы и делает его отличным от нуля.

1. Ньютон Исаак. Математические начала натуральной философии. – М.: Наука, 1989.

Рецензии

«Поэтому второе тело, став препятствием, изменяет направление движения первого тела, но не сообщает ему никакого дополнительного действия»».
Изменение направления движения мяча – это приложение силы стены к мячу. Когда одно тело (поверхность) становится для другого препятствием – это значит, что тело (поверхность) воздействует на другое тело, то есть прикладывает силу к другому телу. Какие ещё «дополнительные» действия Вы ожидаете?

«…оба тела сохранили свое движение, но при этом изменили его направление. Никакого обмена импульсами в этом случае между ними не произошло».
Странный вывод! Импульс величина векторная, а значит, изменились импульсы у каждого тела – на обратные по направлению и равные по модулю, то есть как раз произошёл обмен. Кроме того, не «сохранили движение», а продолжили после столкновения, сохранив скорость движения, или даже вновь её достигнув (после лобового столкновении с остановкой).

Если мы ударим по стене не мячом, а металлическим строительным шаром, то стена так же противодействует шару, но сила воздействия шара превышает силы связи (прочности) внутри стены, поэтому часть стены начнет двигаться вместе с ядром, противодействуя ему и при этом отрываясь от остальной целой стены. Ядро, проломив преграду, продолжит свое движение лишь на то расстояние, которое позволит ему противодействие выломанного куска стены.

Таким образом, у нас нет оснований делать вывод, что Третий закон описывает лишь частный случай общего взаимодействия двух тел. А благодаря приведённому Вами четвертому следствию из третьего закона: «Центр тяжести … системы всех действующих друг на друга тел (при отсутствии внешних действий и препятствий) или находится в покое, или движется равномерно» мы имеем условие применимости этого закона – отсутствие внешнего воздействия. Поэтому новая формулировка закона бесполезна, а пункт 3 (Если векторная сумма внутренних сил механической системы отлична от нуля, то система может изменить свое уравновешенное положение в пространстве независимо от воздействия на неё внешних сил) бессмысленен, поскольку векторная сумма внутренних сил системы может стать отличной от нуля только при внешнем воздействии.
Безопорное движение невозможно по одной очень простой причине – любая система имеет основание, поэтому движение в любой системе опирается на это основание.
С уважением,



Публикации по теме